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Lp-Equivalence of Impulsive Equations 
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By means of a modification of Schauder's theorem, sufficient conditions for the 
Lp-equivalence of impulsive nonlinear differential equations are found. 

1. I N T R O D U C T I O N  

Sufficient conditions are found here for the integral equivalence (Marlin 
and Struble, 1969; Hag~fik and Svec, 1982; Simeonov and Bainov, 1984) of 
an impulsive nonlinear equation and one that is weakly perturbed in some 
sense with respect to the first one. The beginning of the qualitative investiga- 
tion of impulsive equations was marked by the work of Mil 'man and Myshkis 
(1960, 1963) and their theory in the finite-dimensional case is given in 
Samoilenko and Perestyuk, 1987). 

2. STATEMENT OF THE P R OB LEM  

Let X be a Banach space and let R+ = [0, ~ ) .  By {tn}n~_-x we denote a 
sequence of points 0 < t~ < t2 <"  �9 �9 satisfying the condition 

lim t~ = oo 
n -> c(~ 

Consider the impulsive equation 

d x / d t  = F(t ,  x )  (t ~ t ,)  (1) 

x ( t n + O ) = Q , x ( t , )  ( n =  1,2,3 . . . .  ) (2) 

where F ( t , x ) :  ~ + x X - > X  is a continuous function, Q, E L ( X )  ( n =  
1, 2, 3 , . . . ) ,  and by L ( X )  we have denoted the linear space of the linear 
bounded operators acting in X. Moreover, we assume that the operators 
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Qn are invertible, i.e., that there exist continuous inverse operators Q ~  
(n = 1 , 2 , 3 , . . . ) .  

Later, we consider the perturbed impulsive differential equation 

dy/dt=F(t ,y)+G(t ,y)  ( t~  t,) (3) 

y(tn +0) = (Q~ + An)y(tn) (4) 

where G( t ,y ) :  ~+• is a continuous function and A, 6 L ( X )  and 
( Q, + An) ~ L(X) are invertible operators. 

Definition 1. We shall say that the function ~o(t) (t->0) is a solution 
of the equation (1)-(2) [(3)-(4)] if, for t #  t~, it satisfies equation (1) [(3)] 
and for t = t, the condition of " jump" (2) [(4)]. 

Let 1-< p-< oo. By Br we denote a closed ball in the space X with a 
center at zero and radius r. 

Let B be an arbitrary Banach space and II c ~+. By Lp(l~, B) we denote 
the space of functions x: ~-->B for which Sa IIx(t)ll pdt<~176 When 13=R, 
we shall write Lp(O) and when B = R and l) = ~+, we shall write just Lp. 

Definition 2. The equation (3)-(4) is called Lp-equivalent to the 
equation (1)-(2) in the ball Br if there exists p > 0 such that for any solution 
x(t) of (1)-(2) lying in Be there exists a solution y(t) of (3)-(4) lying in 
the ball Br+ p and satisfying the relation y (t) - x (t) c L, ( R +, X).  If  equation 
(3)-(4) is Lp-equivalent to equation (1)-(2) in the ball B~ and vice versa, 
we shall say that equations (1)-(2) and (3)-(4) are Lp-equivalent in the 
ball B~. 

Definition 3. The equation (3)-(4) is called asymptotically Lp- 
equivalent to the equation (1)-(2) in the ball Br if there exist numbers r 0 
and p > 0 such that for any solution x(t) of (1)-(2) which is defined in 
[% ~ )  and lies in the ball Br there exists a solution y~t) of (3)-(4) which 
is defined in [% oo), lies in the ball B~+p, and y ( t ) - x ( t )~  Lp([~-, ~), X). If 
equation (3)-(4) is asymptotically Lp-equivalent to equation (1)-(2) in the 
ball B~ and vice versa, then equations (1)-(2) and (3)-(4) are called 
asymptotically Lp-equivalent in the ball B~. 

3. MAIN RESULTS 

3.1. Equivalent Equations 

Set 

q(t,~*)= [I Qj-' (5) 
t~ty'~T 
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Then each solution x(t) of equation (1)-(2) which lies in the ball B r 

is a solution of the nonlinear integral equation 

x(t) = -  t q(t, s)F(s, x(s)) ds (6) 

[provided that the right-hand side of (6) is defined]. 
Set 

~( t ,z)= I~ (Qj+A2)-' (7) 
t < t j ~  - 

Then each solution y(t) of equation (3)-(4) which lies in the ball Bp is a 
solution of the nonlinear integral equation 

y( t) = - I,  ~ ~( t, s)[ F(s, y(s) ) + G(s, y(s))] ds (8) 

[provided that the right-hand side of (8) is defined]. 
Set 

z ( t ) = y ( t ) - x ( t )  (9) 

and subtract term by term equations (6) and (8). 
Then the function z(t) is a solution of the nonlinear integral equation 

z( t )= - {g l ( t , s )F( s , x ( s )+z ( s ) ) -q ( t , s )F( s , x ( s ) )  
t 

or, more briefly, 

+ 4(t, s)a(s, x(s)+ z(s))} as 

where 

n ( x ,  z ) ( t )  = - I ~ 
t 

(10) 

z(t) = II(x, z)(t) (11) 

{q(t, s)F(s, x(s) + z(s)) - q(t, s)F(s, x(s)) 

+ ~(t, s)G(s, x(s) + z(s))} as (12) 

According to Definition 2, in order to establigh the Lp-equivalence of 
equation (3)-(4) to equation (1)-(2) it suffices to show that for each solution 
x(t) of equation (1)-(2) lying in the ball Br the operator equation (11) has 
a fixed point z(t) such that x( t )+z( t )  ~ Br+p for some p >  0 and which lies 
in Lp(E+, X) .  

Hence the problem of finding sufficient conditions for the Lp- 
equivalence of equation (3)-(4) to equation (1)-(2) is reduced to the problem 
of the existence of a fixed point of the operator II and the study of its 
properties. 
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In the proof  of the existence of a fixed point of the operator II in  the 
present paper a modification of Schauder's classical principle is used refer- 
ring to operators acting in the space S(R+, X)  of functions which are 
continuous for t # tn (n = 1, 2, 3 , . . . ) ,  have at the points tn limits from the 
left and the right, and are left continuous. The space S(R+, X)  is linear, 
locally convex, metrizable, and complete. A metric can be introduced to it, 
for instance, by means of the quality 

p(x, y) = IIx-yf[ 
where 

]]zll = sup ( I + T )  -1 max~ 
0 <  T-<co 1 + maxo~,~r [Iz(t)ll (13) 

The convergence with respect to this metric coincides with the uniform 
convergence on each bounded interval. It is not difficult to verify that for 
this space an analog of Ascoli-Arzella's theorem is valid: the set M :  
S(R+, X)  is relatively compact if and only if the intersections M ( t ) =  
{m(t): m ~ M} are relatively compact for t ~ R+ and M is equicontinuous 
on each interval (t,_~, tn] (n = 1, 2, 3 , . . . ) .  

Lemma 1. Let the operator II transform the set 

C(r) = { x a  S(N+, X):  x( t) c Br( t 6 R+)} 

into itself and be continuous and compact. 
Then II has in C(r) a fixed point. 

3.2. Auxiliary Lemmas 

In the further considerations we shall use some special properties of 
the linear integral operator 

I; Qz(t) = - q(t, s)z(s)  ds (14) 

in various spaces of functions which are defined on R+ and assume values 
in X. Since the integration everywhere is meant in the sense of Bochner, 
then the existence of the integrals follows from the respective estimates. 

Lemma 2. Let q( t, s) satisfy the inequality 

Hq(t,s)l l<-Me ~(t-') ( 0 - < t < s < ~ )  (15) 

and 6 > 0 .  
Then Q: Lp(~+, X)  ~ Lp(R+, X)  n L~(R+, X).  

Proof Since 

I; [[Qz( t)[] <- [Iq( t, s)ll" Ilz(s)ll ds <- M e ~('-s) IIz(s)ll as 
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then from HiSlder's inequality it follows that 

IIQz(t)ll <- M e  ~' e -Ssp' ds Ilzll L, to.~) 
x elt 

= Me~t  (e-~tp'~ l/P" 
\ ~ /  IlzllL, to.~ 

(!+1-1) = M(~p')-l/VllzllL, io.~ ~ \p -~- 

Hence, for z( t )  ~ Lp(g~+, X )  the function Qz(t)  is bounded and satisfies 
the inequality 

M 
II Qz(t)[] - (p ,6 ) , / r  II z I1 ~,E0.oo> (16) 

We apply once more H61der's inequality and obtain the estimate 

l[ Qz( t)ll <-- M It ~ e~~ ds 

= M e ~O-~)/p' e~"-'/'llz(s)ll ds 
t 

~ l /p '[  too "11/. <-M(1) ~ LJ, e~~ 

The above estimate implies the inequality 

we apply Fubini's theorem and obtain 

Hence Q: Lv(R+, X)--> Lp(R+, X ) .  
Lemma 2 is proved. �9 

Let w(t)  ( 0 - t < o o )  be a scalar positive function which is integrable 
on each finite interval. Set 

a(Q. w)={-  f~q(t.s)z(s) ds: llz(t)ll<- w(t)} (17) 

Lemma 3. Let inequality (15) hold and let, moreover, the function 
q(t, s) be constant for t~ (t,_~, t,] (n = 1, 2, 3 , . . .  ). 
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Then the functions of A(Q, w) are uniformly bounded and equicon- 
tinuous on (t ,_l ,  t,] for n = 1, 2, 3 , . . . .  

Proof The first assertion follows immediately from inequality (16). In 
order to prove the second assertion, we shall use the fact that for t 6 ( t ,_l ,  t, ] 
the following equality holds: 

- q(t, s)z(s) ds = - q(t,, s)z(s) ds 
t 

For t', t"~ (t,-1, t,] 

[ -  ft~q(t',s)z(s) d s ] - [ -  fc~q(t",s)z(s) ds] = f,,','q(t.,s)z(s) ds 

which implies the estimate 

I 
t "  

<- M e~(t~ ds 
t '  

Since the function w(s) is integrable on (t .-1, t.], this implies the equicon- 
tinuity of the functions of  A(Q, w) on (tn_l, tn]. 

Lemma 3 is proved. [] 

From Lemma 3 and the above generalization of Ascoli-Arzella's 
theorem about the space S(R+, X)  there follows the compactness of the 
set A(Q, w) when the space X is finite dimensional. In the general case 
when the space X is infinite dimensional, this is not true. 

Let K be a convex, centrally symmetric, and closed set in X and let 
w(t) be a scalar positive function defined on R+. Set 

D(O,w,K)={- f~q( t , s ) z ( s )ds :  z~L(w,K)}  

where 

L(w, K )  : { z ( t )  ~ S (R+,  X ) :  IIz(t)l[-< w(t ) ,  w - l ( t ) z ( t )  E K,  t E •+} 

Lemrna 4. Let the following conditions be fulfilled: 
1. The conditions of Lemma 3 hold. 
2. The set K c X is compact and centrally symmetric. 
3. For t ~ R+ the following inequality holds: 

t ~ Ilq( t, s)liw(s) ds < ~ 

Then the set D(Q, w, K)  is compact in S(R+, X).  
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Proof From Lemma 3 and the above generalization of Ascoli-Arzella's 
theorem about the space S(N+, X)  it follows that in order to prove Lemma 
4, it suffices to verify that for t c N+ the set of the intersections D(Q, w, K)(t) 
of the functions of D(Q, w, K)  is compact. 

Let t ~ ~+ be fixed. Then for any T > t and c > 0 from the mean value 
theorem for integrals it follows that 

f T q(t, s)z(s)[w(s)]-lwc(s) ~ M ( T -  t)cK ds 
t 

where we(s)= min{c, w(s)}. Since the set K is compact, then M(T- t ) cK  
is a compact subset of X, Moreover, 

q(t, s)z(s) ds- q(t, s )z (s )w- l (s )wc(s)  <- Ilq(t, s)llw(s) as 
t t c 

[zeL(w,K)], where 12c={se[t,T]:w(s)>-c}. Since the function 
IIq(t, s)llw(s) is integrable on It, T], then 

f llq(t,s)llw(s)ds~O (c->oo) 
c 

This implies that the set 

DT = { f / q( t, s)z(s) ds: [lz(s)l, <- w(s), z(s)w-'(s) ~ K, s c [ t, T]} 

is approximated arbitrarily closely by the compact set M(T-t)cK,  hence, 
by Hausdorff's theorem, is compact, too. Moreover, for z~ L(w, K) the 
following inequality holds: 

I; q(t, s)z(s) ds-  q(t, s)z(s) ds <- T Ilq(t, S)IIw(s) ds 

Since the function IIq(t, s)ll w(s) is integrable on •+, then 

fTl[q(t,s),,w(s)ds~O for T ~ c o  

But this means that the set D(Q, w, K) is approximated arbitrarily closely 
by the compact sets DT, and by Hausdorff's theorem it is compact itself. 

Lemma 4 is proved. �9 

3.3. Conditions for Lp-equivalence 

Before going on to the proof  of  the main assertions, we mention that 
all functions considered in the present paper are Bochner measurable. That 
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is why a sufficient condition for their integrability is the absolute convergence 
of the respective integrals. 

Theorem 1. Let the following conditions be fulfilled: 
1. The operator-valued functions q(t, s) and ~(t, s) satisfy the estimates 

Ilq(t,s)l[, [14(t,s)ll<_Me~'-" (O_<t<s<oo) (18) 

where M, 8 >  O, and the operators A, (n = 1, 2, 3 , . . . )  satisfy the condition 

E IIAkll <-Ne~u-~> (0 - < t < s < ~ 1 7 6  (19) 
t ~ t k < S  

where N > 0 ,  e > - 8 .  
2. The function F(t, x) satisfies the conditions 

q~(t) = sup IIF(t. u)ll c L,(U+) (20) 

4,,.,(t)= sup [IF(t,u+v)-F(t,u)[l~L,(n+) (21) 
II,ll<--r.ll~ll--<O 

and 

4J~,~(t)[F(r,u+v)-F(t,u)]6K for tcn+, Ilull<-r, llvll-<p 

where K is a convex, compact, centrally symmetric set and p is a positive 
number. 

3. The function G(t:, x) satisfies the condition 

X,+o(t) = sup IlG(t, u)t[ c Lp(R+) (22) 
II.ll-<~+p 

and 

'-1 xr+pG(t,u)~K (0~ t<oo, Ilull~r) 

4. The following inequality holds: 

M~N M [(,~+~)p,]l/p, ll~r(t)llL +(@,),/p----~ll(q,r.p+Xr+p)(t)llLo<-p (23) 

Then the equation (3)-(4) is Lp-equivalent to the equation (1)-(2) in 
the ball Br. 

Proof. We shall show that for any function x(t) such that x(t)~ B~ 
(t ~ R+) the operator II(x, z) defined by equality (12) maps the set 

C(p) = {z E S(~+, X): z(t) E Bp(t E R+)} 

into itself. 
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Let x(t)  E Br (t c [R+) and let z ~ C(p). Then the norm of the operator 

I I (x , z ) ( t )=  - { ~ ( t , s ) [ F ( s , x ( s ) + z ( s ) ) - F ( s , x ( s ) ) ]  
t 

+ [4(t, s ) -  q(t, s)]E(s, x(s)) 

+ q(t, s)G(s, x(s) + z(s))} ds (24) 

satisfies the estimate 

IIn(x, z)(t)[I-< f o~ (]l~(t, s)ll" lIE(s, x ( s ) +  z (s ) )  - E(s,  x(s))l] 

+ ]]~(t, s) - q(t, s)l I �9 liE(s, x(s))ll 

+ IIq(t, s)ll.  ]lG(s, x(s)+z(s))ll ds 

whence, in view of (20) and (23), we obtain 

IIH(x,z)(t)<- II~(t,s)ll[O~o(s)+x~+o(s)] as 
t 

+ II~(t, s ) - q ( t ,  s)llq~r(S ) ds (25) 
t 

The first of the integrals on the right-hand side of (25) can be estimated, 
in view of (18) and Lemma 2, in the following way: 

f ~  M 
114( I, S)]][~Ir, P (S ) "~ -Xr~-P  ( S ) ]  ds<- ((~p,)l/p' 114'r,o+Xr+o)(s)llL, (26) 

In order to estimate the second integral in inequality (25), we use a suitable 
estimate of q(t, s ) - q ( t ,  s). The expression q(t, s ) - q ( t ,  s) satisfies the 
equality 

q(t, s ) - q ( t ,  s)= [I ( Q j + A j ) - ' -  [[ Q~-' 
t<-9<s t~9<~ 

t~-tk<S t ~ t j ~ t  k \ t  k t j<s 

= - ~ 4(t, tk+o)Akq(tk, S) 
t ~ t k < s  

whence by (18) we obtain the estimate 

[Igt(t,s)-q(t,s)l] <-M2 Z e~(t-tk)+~('k-s)llAkll 
t ~ t k ~ S  

t ~ t k < s  
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In view of inequality (19) we obtain 

I]q(t, s ) -  q( t, s)l I -< M 2 N  e (~+~)O-s) 

Using the above inequality for the second integral in (25), we obtain the 
following estimate: 

I; I; ][~( t , s ) -q( t , s ) l [~r(s)ds<_M2N e(~+~)('-s~ ~r(s)ds 

whence by Lemma 2 

i 
v M 2 N  
t [Iq(t's)-q(t's)ll~~ (27) 

In view of inequalities (26), (27), and (25), for the expression IIH(x, z)(t)ll 
we obtain the estimate 

M 2 N  M 
lira(x, z)(t)ll-< [(3 + ~)p,]l/,, II~r]lL, ~ (~p,)l/p, II ~,,o +x~§ II~, 

whence by (23) we obtain I[II(x, z)(t)[I---p, i.e., H(x, z )e  C(p).  Hence, for 
any x e C(r), the set C(p)  is invariant with respect to II(x, z). 

We shall show that the operator Yl(x, z) is continuous in S(R§ X). 
First we establish that the set of values II(x, �9 ) on C(p) is compact in 

S(R+, X). In fact, the operators 

Fx(z)(t) = F(t, x(t)  + z(t)) - F(t, x(t))  

and 

Gx(z)(t) = G(t, x(t)  + z(t)) 

transform C(p),  in view of (21), (22), into the sets L(r K)  and 
L(Xr§ K) ,  respectively, which, in view of Lemma 4, are further transformed 
by the linear integral operator (~ with a kernel ~(t, s) into compact sets. 

Let the sequence {z,( t)}c C(p) be convergent in the metric of the 
space S(~+, X) (i.e., uniformly on each bounded interval) to the function 
z( t) ~ C(p).  Then, for t ~ ~+ the sequences F( t, x(t)  + z~(t)) - F( t, x(t))  and 
G(t, x( t )+z~(t ) )  converge to F(t, x ( t ) + z ( t ) ) - F ( t ,  x(t))  and G(t, x ( t )+  
z(t)), respectively. The two sequences of functions are majorized, respec- 
tively, by the functions q,~.p(t), X~+p(t) ~ Lp(R+). From Lemma 2 it follows 
that the convergent sequences of functions 

4(t, s)[F(s, x ( s ) + z , ( s ) ) - F ( s ,  x(s))], ~l(t, s)G(s, x ( s )+z , ( s ) )  

are majorized by the integrable functions M e  8~'-~) q,~.p(s) and 
M e  8(t-s) Xr+p(s), respectively. That is why within the integrals in formula 
(24) we may pass to the limit, hence II(x, z,)(t)  tends to H(x, z)(t) for 
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t ~ R+. Since II(x, z) maps C(p) into a compact set, this implies that II(x, z,) 
tends to II(x, z) in S(R+, Z)  as well. 

From Lemma 1 it follows that for any x ~ C(r) the operator II(x, z) 
has a fixed point z in C(p), i.e., z = II(x, z). In view of Lemma 2, this fixed 
point belongs to the space Lp(R+, X), i.e., equation (3)-(4) is Lp-equivalent 
to equation (1)-(2) in the ball B,. 

Theorem 1 is proved. �9 

3.4. Conditions for Asymptotic Lp-Equivalence 

Theorem 2. Let the following conditions be fulfilled. 
1. The operator-valued functions q(t, s) and 4(t, s) satisfy the condi- 

tions 

Ilq(t,s)ll, II4(t,s)ll<-Me ~'-s) ( 0 - < t < s < ~ )  (28) 

where M, 6 > 0 and the operators A, (n = 1, 2, 3 , . . . )  satisfy the conditions 

Z Ilakll ( 0 - < t < s < ~ )  
t< tk~S 

where N > 0, e > - & 
2. The func t ion  F(t, x) satisfies the condi t ions 

= sup IIF(t,  u)ll L , (R+ )  
II"ll<r (29) 

~,,p(t) = sup IlF(t,u+v)-F(t,u)llcLp(~+) 
IluH<-r, llvll-<p 

where 

6 ~ ( t ) [ F ( t , u + v ) - F ( t , u ) ] ~ K  ( t ~ §  Ilull-<r, Ilvll-<p) 

K is a convex, compact, centrally symmetric set and p is a positive number. 

3. The function G(t, x) satisfies the condition 

X,+,(t)= sup IIG(t,u)ll~t,(~+) (30) 
Ilull--<r+p 

and 

X~p( t )G( t ,u )cg  (t ER§ Ilull ~ r) 

Then equation (3)-(4) is asymptotically Lp-equivalent to equation 
(1)-(2) in the ball B,. 

Theorem 2 is a consequence of Theorem 1. Its proof, by the substitution 
7-- t + r, where r is a sufficiently large, positive constant, is reduced to a 
verification of  the conditions of Theorem 1. 

Analogously, theorems on Lp-equivalence and asymptotic Lp- 
equivalence of equations (1)-(2) and (3)-(4) can be formulated and proved. 
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3.5. Remarks 

Remark 1. Conditions 1-4 of Theorem 
following conditions: 

i oo II ~(t, s)lI[ll V(s, x(s)  § z (s ) )  - F(s,  x(s))If 
t 

+ 1t G(s, x(s) + z(s))ll] d~ 

+ .~|~ IIq(t, s ) -  ~(t, x)ll" IIF(~, x(s))ll ds~-p 

for some p > O; 

Bainov et  al.  

1 can be replaced by the 

(31) 

where 

lim h(T, r, p) = 0  
T ~ o o  

lim sup f ,~llq(t ,s)-~(t ,s) l[  . IIF(s,x(s))ll ds=O (34) 
T~eo  t ~ T  

x( t )~S(R+,X) ,  Ilx(t)ll<_r, T<_t<oo) 

lim sup sup 
t"--t'~O t',t"~(tn_l,tn] ]lz(s)[l<__p 

z(s)eS(•+,  X )  

I '"  II ~(t~ s)ll[llf(s, x ( s )+z ( s ) ) -F ( s ,  x(s))ll 
t ~ 

+ IIG(s, x(s)+z(s))ll] as =0 (35) 

x ( t ) c S ( e + , X ) ,  Ilx(t)ll<_r, n-= 1,2,3, . . .  

lim sup sup 
t"--t'~O t',t"E(t,, l , t n ]  I I z ( s ) l l < P  

z (s )~S(R+,  X )  

j ~ t" 

• II~(t, ,s)llEIIF(s,x(s)+z(s))-f(s,x(s))ll  
t' 

+ IfG(s, x(s)+z(s))lll  as =0 (32) 
for x( t )  ~ S(R+, X),  IIx(t)l[-< r, n = 1, 2, 3 , . . ,  z(t) <- p 

Remark 2. Conditions 1-3 of Theorem 2 can be replaced by the follow- 
ing conditions: 

f o~ I]#(t, s)ll[llF(s, x ( s )+z ( s ) ) -F ( s ,  x(s))ll 

+ lla(s,x(s)+ z(s))ll] ds<- h(T, r ,p) (33) 

x ( t ) , z ( t ) cS (~+ ,X) ,  Ilx(t)ll<_r, Ilz(t)ll<_p, t>_ r 
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Remark 3. Theorem 1 can be extended, without any changes in the 
proof, to impulsive functional differential equations of the type 

d x / d t = F x  ( t r  tn) 

x(t ,+O)=Q,x(tn)  (n = 1 , 2 , 3 , . . . )  

and 

d y / d t = F y + G y  ( t~t~)  

y(tn+O)=(Qn+A,)y(tn) (n = 1 , 2 , 3 , . . . )  

Here F and G are operators defined for all functions x c S(R§ X)  such 
that IIx(t)ll -< r + p and x(t) ~ Lp(R+, X)  for concrete r, p > 0 and 1 <- p - ~ .  

In particular, the operator G can be chosen in the following three ways: 

1. Gx(t) =I'0 K(t, s, x(s)) as 
2. Gx(t) = Gl(t, x(t), x(A(t)), where A(t): R+~R+ 
3. Gx(t) = Gl(t, x(t), maxs~(,)  x(s)) 

where X = R and E(t) is a finite set depending on t "well enough." 

Remark 4. An essential role in the proof  of  Theorem 1 (Theorem 2) 
is played by inequalities (18) [(28)]. Analogous theorems can be proved 
when in their place inequalities of the following form hold: 

Ilw(t,s)ll, II~(t,;)ll<-Me ~('-s) (0 -<s -< t<  oo) 

where M > 0 ,  ~ < 0 ,  w(t,s)=II~<_~j<t Qj, ff(t,s)=l-i~<_~j<,(Q~+Aj). 
Then, instead of integral equations (6) and (8), the following equations 

should be considered: 

Io x(t) = q(t, 0)x(0) + q(t, s)F(s, x(s)) as 

Io y(t) = 4(t, 0)x(0)+  4(4 s)[F(s, y(s))+ G(s, y(s))]  as 

In this case the condition of the invertibility of  the operators Q. and 
Q, + An is superfluous. One can consider a still more general situation when 
the operators Qn and Q, + An are such that the impulsive linear equations 

dx/dt=O ( t~  tn) 

x(t~ +0) = Qnx(tn) (n = 1, 2 ,3 , . . . )  

and 

dy/dt=O (ty ~ t~) 

y(t,  +0) = (Q, + An)y(t.) 

are exponentially dichotomous. 

(n-= 1, 2, 3 , . . . )  
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Remark 5. For p = co instead of  the space L~(R+, X )  it is more con- 
L~(R§ X) consisting of  functions tending venient to consider its subspace 0 

to zero for t ~ o o .  Equation (12) can be considered in this space if 
L~(~+ ,  X) .  In this the functions ~pr(t), ~r.p(t), and Xr+p(t) are elements of  o 

case the operator II(x, z) will be compact not only in S ( R . , X )  but 
also in Loo(R+, X) .  In this case for the proof  of  Theorem 1 one can use 
not only Schauder's theorem, but also the theory of  the rotations of  the 
continuous compact vector fields (e.g., the theorem of  the odd vector 
fields (Krasnosel'skii and Zabreiko, 1984). 
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